Bollettino di Geofisica Teorica e Applicata
OGS Website BGTA homepage
About the Journal
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2020 Vol. 61
Suppl. 1 / 1 / 2 / 3

2019 Vol. 60
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2018 Vol. 59
1 / 2 / 3 / 4 / Suppl. 1

2017 Vol. 58
1 / 2 / 3 / 4

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 1

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 50, n.2, June 2009
pp. 209-226

Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment

G. CASSIANI, M. GIUSTINIANI, S. FERRARIS, R. DEIANA and C. STROBBIA

Received: February 27, 2008; accepted: July 04, 2008

Abstract

The knowledge of moisture content changes in shallow soil layers has important environmental implications and is fundamental in fields of application such as soil science. In fact, the exchange of energy and water with the atmosphere, the mechanisms of flood generation as well as the infiltration of water and contaminant into the subsurface are primarily controlled by the presence of water in the pores of shallow soils. At the same time, the estimation of moisture content in the shallow subsurface is a difficult task. Direct measurements of water content require the recovery of soil samples for laboratory analyses: sampling is invasive and often destructive. In addition, these data are generally insufficient to yield a good spatial coverage for basin-scale investigations. In-situ assessment of soil-moisture contents, possibly at the scale of interest for distributed catchment-scale models, is therefore necessary. The goal of this paper is to assess the information contained in surface-tosurface GPR surveys for moisture content estimation under dynamic conditions. GPR data are compared against and integrated with TDR (Time Domain Reflectometry) data. TDR and surface-to-surface GPR data act at different spatial scales and two different frequency ranges. TDR, in particular, is widely used to estimate soil water content, e.g. converting bulk dielectric constant into volumetric water content values. GPR used in surface-to-surface configuration has been used increasingly to quickly image soil moisture content over large areas. Direct GPR wave velocity is measured in the ground. However, in the presence of shallow and thin low-velocity soil layers, such as the one generated by an infiltrating water front, dispersive, guided GPR waves are generated and the direct ground wave is not identifiable as a simple arrival. Under such conditions, the dispersion relation of guided waves can be estimated from field data and then inverted to obtain the properties of the guiding layers. In this paper, we analyze the GPR and TDR data collected at an experimental site of the University of Turin, during a controlled infiltration experiment.

Download PDF complete



back to table of contents