Bollettino di Geofisica Teorica e Applicata
OGS Website BGTA homepage
About the Journal
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2017 Vol. 58
1 / 2

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 2 / Suppl.1

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 2

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 58, n.1, March 2017
pp. 43-54

Sensitivity analysis of marine Controlled-Source Electromagnetic data

A.H. Mansi, S. Marzi, E. Farshchiansadegh and G. Bernasconi

Received: October 18, 2016; accepted: February 27, 2017

Abstract

Electromagnetic sounding methods represent one of the few geophysical techniques that can provide information about the state and the properties of deep continental crust and upper mantle. In particular, marine Controlled-Source Electromagnetic (mCSEM) method is being applied to offshore hydrocarbon exploration and providing encouraging results, as it can complement the information obtained from seismic elaborations, mainly the position of the elastic discontinuities, with a map of electrical conductivity, the principal "discriminator" between conductive water-bearing rocks and non-conductive hydrocarbon accumulations. The processing of mCSEM data can be problematic due to the non-uniqueness of the solution, the environmental and equipment noise, and the high computational power required when dealing with 3D inversion. This paper proposes a simplified procedure to study and rank the sensitivity of mCSEM in a canonical 1D scenario, with a single resistive anomaly embedded in a homogeneous background. We analyze the sensitivity of the data with respect to the most important test parameters, namely the frequency, target depth, thickness, and resistivity. In addition, this procedure is also utilized to validate the so-called T-equivalence theorem. The results of this study could assist the interpreter to highlight the reliability of the inverted parameters in a complex inversion environment.

Download PDF complete



back to table of contents