Bollettino di Geofisica Teorica e Applicata
OGS Website BGTA homepage
About the Journal
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2020 Vol. 61
Suppl. 1 / 1 / 2 / 3 / 4

2019 Vol. 60
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2018 Vol. 59
1 / 2 / 3 / 4 / Suppl. 1

2017 Vol. 58
1 / 2 / 3 / 4

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 1

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 61, n.4, December 2020
pp. 517-538

An integrated multi-physics Machine Learning approach for exploration risk mitigation

P. Dell'Aversana

Received: 17 December 2019; accepted: 10 March 2020

Abstract

In this paper, we combine pre-stack depth migration of seismic data, cooperative modelling of Controlled Source Electromagnetic (CSEM) and gravity data, and constrained inversion of CSEM data, with Machine Learning (ML) classification approaches. Our objective is to obtain probability maps of hydrocarbon distribution aimed at mitigating the exploration risk and supporting the process of appraisal of hydrocarbon fields. We introduce a novel workflow divided into two linked branches: one consists of an iterative loop of modelling and inversion steps driving towards a multi-parametric Earth model; the other path of the workflow goes through the application of advanced statistical tools and takes the benefits of automatic learning and classification algorithms. These allow us combining the entire set of heterogeneous data/models into probabilistic maps of oil distribution at target depth. We applied our methodology to a complex data set in the Norway offshore, obtaining encouraging results.

Download PDF complete



back to table of contents