Bollettino di Geofisica Teorica e Applicata
OGS Website BGTA homepage
About the Journal
Contacts
To Authors
On-line Submission
Subscriptions
Forthcoming
On-line First
The Historical First Issue
Issues

2021 Vol. 62
1 / Suppl. 1

2020 Vol. 61
1 / 2 / 3 / 4 / Suppl. 1

2019 Vol. 60
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2 / Suppl. 3

2018 Vol. 59
1 / 2 / 3 / 4 / Suppl. 1

2017 Vol. 58
1 / 2 / 3 / 4

2016 Vol. 57
1 / 2 / 3 / 4 / Suppl. 1

2015 Vol. 56
1 / 2 / 3 / 4

2014 Vol. 55
1 / 2 / 3 / 4

2013 Vol. 54
1 / 2 / 3 / 4 / Suppl. 1 / Suppl. 2

2012 Vol. 53
1 / 2 / 3 / 4

2011 Vol. 52
1 / 2 / 3 / 4 / Suppl. 1

2010 Vol. 51
1 / 2-3 / 4 / Suppl. 1

2009 Vol. 50
1 / 2 / 3 / 4

2008 Vol. 49
1 / 2 / 3-4 / Suppl. 1

2007 Vol. 48
1 / 2 / 3 / 4

2006 Vol. 47
1-2 / 3 / 4

2005 Vol. 46
1 / 2-3 / 4

2004 Vol. 45
1-2 / 3 / 4 / Suppl. 1 / Suppl. 2

2003 Vol. 44
1 / 2 / 3-4

2002 Vol. 43
1-2 / 3-4

2001 Vol. 42
1-2 / 3-4

2000 Vol. 41
1 / 2 / 3-4

1999 Vol. 40
1 / 2 / 3-4

1998 Vol. 39
1 / 2 / 3 / 4

1997 Vol. 38
1-2 / 3-4

1995 Vol. 37
145 / 146 / 147 / 148 / Suppl. 1

1994 Vol. 36
141-144 / Suppl. 1

1993 Vol. 35
137-138 / 139 / 140

1992 Vol. 34
133 / 134-135 / 136

1991 Vol. 33
129 / 130-131 / 132

 
 

Vol. 62, n.1, March 2021
pp. 89-100

Integrating the pre-stack seismic data inversion and seismic attributes to estimate the porosity of Asmari Formation

A. Jelvegar Filband and M.A. Riahi

Received: 14 February 2020; accepted: 12 May 2020

Abstract

In this study, the inversion of seismic data has been used in integration with the seismic attributes in order to evaluate the reservoir porosity in the Ghar member of the Asmari Formation for an oil field located in SW Iran. Using the inversion method based on acoustic impedance modelling, the compressional wave velocity and density are extracted and, then, the linear and nonlinear conversion between the seismic attributes and the porosity log is used to obtain the optimum porosity volume for the region. In this study, we have used pre-stack seismic data to estimate reservoir porosity. The combination of selected seismic attributes along with the raw seismic data is used to estimate the porosity by the neural network method. In order to validate the utilised method, the cross-validation technique has been used to compare the accuracy of the calculated petrophysical parameters with the actual values. The correlation coefficient obtained for the estimated porosity is 81%. This value indicates that the training data were appropriate, optimally estimating the actual porosity using the selected attributes.



Download PDF complete


back to table of contents