Three dimensional seismic imaging and earthquake locations in a complex, normal faulting region of southern Apennines (Italy)

Amoroso O.¹*, A. Ascione², S. Mazzoli², J. Virieux³ and A. Zollo¹

¹ Department of Physics, University of Naples ‘Federico II’, Italy,
² Department of Earth Sciences, Environment and Georesources (DiSTAR), University of Naples ‘Federico II’, Italy,
³ ISTerre, Université de Grenoble I, CNRS, BP 53,

*Now at Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy.
Motivations

- The Campania-Lucania portion of Southern Apennines is a high seismic hazard area: a composite systems of active normal faults coexist, which are causative of large and damaging earthquakes in the past centuries.

- An intense, continuous micro-seismic activity is currently recorded, that appears connected and delineates the primary fault structures generating moderate to large earthquakes.

- High-quality data are nowadays available from a dense network of seismometers (short-period and broad-band) and accelerometers (AMRA, INGV, DPC)

Can the background micro-seismicity be used to infer high-resolution images of the active fault zones and of the embedding crustal medium?
High resolution imaging of fault structures

- Joint interpretation of P- and S-wave velocity structure
- Relocated seismicity

High quality catalogue:

- S-wave identification by polarization filtering
- P- and S-phase refined re-picking based on cross-correlation

Tomographic inversion strategy:

- Joint inversion of hypocentral and velocity parameters
- Multi-scale approach
Outline

- Seismicity and geological setting
- Data and processing techniques
- Tomographic method
- Inversion strategy
- Observed data inversion
- Conclusion
A complex architecture of the southern Apennines is originated by the deformation of:

- the **Western Carbonate platform**
- **Apulia Carbonate platform**
- the **Lagonegro basin**

The southern Apennines chain is a NE-directed fold and thrust belt, with the Apulian promontory representing the orogenic foreland.
Earthquakes M 5.5+ occur along a system of NW-SE striking normal faults along the Apenninic chain and an approximately EW oriented strike-slip fault transversely cutting the belt.

Background micro-seismicity is likely generated along the major fault segments activated during the most recent earthquakes.
Earthquake waveform data-set

Network
- Covered area 100x70 km2
- 42 stations, average dist 10-20 km

Data Collection
- 1311 events from 09/2005 to 04/2011
- Moment magnitude: 0.9-3.1
- Initial P- and S-phase manual pick

Selection
- Re-location in 1D reference model
- Gap <200°, 5 P 2 S, RMS<0.5s
- 634 events, 6425 P 3214 S
Data processing
S-wave detection by polarization filtering and waveform coherence analysis

S characteristic function (CF)

CF common receiver sections

3C processing
- Rotation from the observation system (ZNE) to ray coordinate system (LQT)
- Polarization filtering
 - Energy ratio H
 - Rectilinearity P
 - Directivity D
- Construction of characteristic function

Lateral coherence of the waves as a function of the hypocentral distance

The first arrival coincides with the first arrival of the S-waves

Amoroso et al 2012, BSSA
Data processing
P and S refined re-picking by waveform cross-correlation

Traces aligned on P manual picks
Traces aligned on P adjusted picks

SCL3
Hypo dist (km)
NSC3
Hypo dist (km)
VDS3
Hypo dist (km)

Time (s)

Traces aligned on S manual picks
Traces aligned on S adjusted picks

COL3
Hypo dist (km)
NSC3
Hypo dist (km)
RDM3
Hypo dist (km)

Time (s)

Manual pick
Refined pick
Manual pick
Refined pick
Tomographic method

TOMOTV*: Iterative, linearized, tomographic approach for the joint inversion of P and S arrival times to infer the earthquakes location and 3D velocity models

Initial Model
Velocity model v_0
Eqks location x_0, y_0, z_0, T_0

- Trilinear interpolation of the velocity model in a finer grid
- Calculation of theoretical travel-times (Podvin and Lecomte, 1991)
- Back-ray tracing
- Accurate calculation of the travel time by integrating the slowness along the ray path

New Model
Velocity model $v_0 + dv_0$
Eqks location $x_0 + dx_0$, $y_0 + dy_0$, $z_0 + dz_0$, $T_0 + dT_0$

$\Delta t = t_{\text{obs}} - t_{\text{cal}}$

- Preconditioning and smoothing of the matrix
- Inversion of the matricial system $\Delta t = Gm$
 LSQR (Paige and Saunders, 1982)

Results

- RMS > threshold
 - New Model became the Final Model
- RMS < threshold

Tomographic method was proposed by Latorre et al., 2004.
The reference 1D, P- and S-velocity models

- The **P-wave Minimum 1D velocity model** is computed by a joint inversion of layered velocity model, station corrections and hypocenter locations (VELEST, Kissling et al, 1995)

- An initial Vp/Vs value of 1.85 is estimated by minimizing the RMS of S-wave arrival times

- P-wave average station delays indicate a wide-scale, lateral variation of seismic velocities in the SW-NE direction, consistent with the transition between the carbonatic platform outcrops at South-West and the Miocene sedimentary basins at North-East

Matrullo et al., 2013
Inversion strategy
Parametrization

Multi-scale approach

A series of inversion progressively decreasing the grid spacing are performed. The starting model for each inversion being in the final model of the previous one (Chiao and Kuo, 2001).

Synthetic pattern

Recovered pattern

Dx, Dy, Dz= 12x12x4 km³

Dx, Dy, Dz= 6x6x2 km³

Dx, Dy, Dz= 3x3x1 km³
Assessment of solution reliability

Checkerboard tests

Resolvability of checkerboards

The semblance between exact and recovered checkerboard anomalies provides a quantitative resolution estimate (Zelt, 1998)
1D profiles from 3D velocity models

- Good agreement with sonic logs but smoother velocity variations
- Vp/Vs ratio sharply increases at 2-6 km depth along the fault zone.
- At approximately the same depth we observe a peak in earthquake distribution.
3D P- and S-velocity models: plan view

P-wave

- Sharp velocity variation in the SW-NE direction down to 8 km depth
- At South-West the outcrops of the Campanian Platform and the uplift of the Apulian Platform are detected by the high P-velocity anomaly (6.0-6.8 km/s)

S-wave

- At North-East the low P-velocities are related to the sequence of Quaternary basins and the thickening of the Lagonegro units
- The S-model reproduce features similar to the P-model but with a smoother resolution
Seismic image of ‘an earthquake reservoir’

- The P-wave model follows the main lithological discontinuities.
- The microseismicity tends to cluster at the top of the basement and at the top of the Apulian Platform carbonates, and it is confined within a 15 km wide block bounded by the SW and NE Boundary Faults and including the Central Fault, along which the main shock of the MS 6.9, 1980 earthquake nucleated.
- The VP/VS ratio shows a sharp increase from near-surface values of 1.7-1.8 to 2.0-2.2 between 5 and 10 km depth. A diffused high VP/VS ratio occurs within the Apulian Platform carbonates located between the SW and NE Boundary Faults.
- The VP×VS product defines a volume characterized by relatively low values.
Conclusions

- A comprehensive picture of the upper crustal structure of the Irpinia active fault system has been obtained.

- The 3D P- and S-wave velocity models well delineating the main lithological discontinuities.

- Background seismicity is concentrated within the multiple-faulted block, which embeddes the graben-like system.

- The microearthquake activity confined within the highest Vp/Vs volume and the combined interpretation of Vp/Vs ratio, and Vp x Vs product suggest that, fault lubrication processes may occur.

- These processes control the concentration of background seismicity within an active fault-bounded block, and the nucleation of large earthquakes such as the Ms 6.9, 1980 Irpinia earthquake through pore-pressure increase on fluid-filled cracks located within the damage zone volume surrounding the major active faults.