IDENTIFYING MACRO-GEOLOGICAL STRUCTURES USEFUL FOR MINERAL EXPLORATION WITH GOCE

Carla Braitenberg
Department of Mathematics and Geosciences
University of Trieste, Trieste (Italy)
berg@units.it
GOCE
17 March 2009 – 11 November 2013
Aim of Study

• Map **cross-continental macro-geologic** lineaments using the GOCE gravity field.

• Identification of geologic lineaments is a basic piece of knowledge in mineral exploration and targets new geologic/geophysical mapping

• **Cross-continental lineaments**: features that formed previous to continent-break up
Contents

• 1) GOCE data reduction and identification of macro-geologic lineaments.
• 2) Central Africa mineral findings and geologic units
• 3) Cross-continent lineaments: reconstructed gravity of Gondwana
Contents

• 1) GOCE data reduction and identification of macro-geologic lineaments.

• 2) Central Africa mineral findings and geologic units

• 3) Cross-continent lineaments: reconstructed gravity of Gondwana
Geologic residual gravity field

• Observed GOCE gravity and gradient must be reduced by obvious signals:
 • Greatest contributions are: Topography (-10km to +10km), crustal thickness (70km to 1 km)
 • Next important: sedimentary basins
 • Global Residual: isostatic flexure or regression analysis gravity and topography.
Gravity residual calculation
Contents

• 1) GOCE data reduction and identification of macro-geologic lineaments.
• 2) Central Africa mineral findings and geologic units
• 3) Cross-continent lineaments: reconstructed gravity of Gondwana
Example Central Africa

Bouguer reduced by isostatic Moho and sediments

Carla Braitenberg, Università di Trieste
Macro-geological structures with GOCE
Productive lineaments

Geological Map

GOCE Bouguer map

Bouger reduced by isostatic Moho and sediments

Carla Braitenberg, Università di Trieste

Macro-geological structures with GOCE
Productive lineaments

Geological Map

GOCE Bouguer map

Bouguer reduced by isostatic Moho and sediments

Carla Braitenberg, Università di Trieste

Macro-geological structures with GOCE
Contents

• 1) GOCE data reduction and identification of macro-geologic lineaments.
• 2) Central Africa mineral findings and geologic units
• 3) Cross-continent lineaments: reconstructed gravity of Gondwana
Cross-Continent Lineaments

• Macro-geologic units partly have formed before continents separated
• Therefore cross-continent continuity is expected for units that formed before continent-separation
• GOCE gravity field is used hypothesizing rigid continents rotations
• Gondwana reconstruction: Earth at 255 Ma
Gravity of Gondwana

GOCE Residual Free Air at 255Ma

Zoom on Africa-South America

GOCE Residual Free Air at 255Ma
Conclusions 1/2

• For the first time a global gravity field can resolve geologic structures. Wide range of applications:
 • No loss of continuity across boundaries: national, continent-ocean boundary, high elevations
 • Close coastal gap between satellite-altimetry and terrestrial field
 • Excellent match of gravity and known geologic units (Alps, Himalaya, Africa)
Conclusions 2/2

• Allows global continent reconstructions
• Geologic mapping of potentially productive rock units successful
• New tool for exploration of natural resources
Thank you for your attention!

Bora a Trieste, Febbraio 2012