Sub-bottom and GPR surveys over two three puzzling lakes within the Ivrea Morainic Amphitheatre (NW Italy)

L. Sambuelli, A. Fiorucci: DIATI - Politecnico Di Torino
S. Piro: ITABC - CNR - Roma
C. Comina, C. Colombero: DST - Università di Torino
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre

The Instruments

- GPR 40 MHz
- Sub-bottom 10 kHz
- Sub-bottom 3.5 kHz
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Occurrence of shallow gas in the easternmost Lago Fagnano (Tierra del Fuego)
E. Lodolo, L. Baradello, A. Darbo, M. Caffau, A. Tassone, H. Lippai, A. Lodolo, G. De Zorzi and M. Grossi
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
The Candia Lake CVES

Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Fig. 3. Core correlation in Lake Candia between the 1990 core CAND3 and the 1995 core CAND95-B on the basis of magnetic susceptibility scans. A broken line has been drawn between the main peak present in both cores. Cores are plotted to match this peak. CAND3 was dated by 210Pb. AMS 14C dates are from core CAND95-B (present study). The lithology of core CAND95-B is also shown.
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
THE VIVERONE LAKE

Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
SOME CONSIDERATIONS

But no bubble’s resonance has been taken into account!!

Water depth 4m; T= 12°C; S=3000ppm; Max CH₄ dissolved (gas/water ratio) about 11%

Sub-bottom and GPR survey over two puzzling lakes within the Ivrea Morainic Amphitheatre
THE PUZZLING LAKE

<table>
<thead>
<tr>
<th>Paper</th>
<th>Site</th>
<th>Elevation m.a.m.s.l.</th>
<th>Ave. [mm/y]</th>
<th>Core length [m]</th>
<th>Inflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simonneau et al., 2014, Quat. Sc. Rev.</td>
<td>Lake Blanc Huez, W French Alps</td>
<td>2550</td>
<td>0.3</td>
<td>3.4</td>
<td>no</td>
</tr>
<tr>
<td>Menounos B, 1997, The Holocene</td>
<td>Sky Pond, Colorado, USA</td>
<td>3000</td>
<td>0.3</td>
<td>3.8</td>
<td>no</td>
</tr>
<tr>
<td>Lami et al, 2000, J. Limnol.</td>
<td>Candia Lake, NW Italy</td>
<td>226</td>
<td>0.54</td>
<td>1.1</td>
<td>no</td>
</tr>
<tr>
<td>Nesje et al., 2000, Quat. Sc. Rev.</td>
<td>Sygneskardvatnet, W Norway</td>
<td>662</td>
<td>0.5</td>
<td>4.3</td>
<td>yes (glacier)</td>
</tr>
<tr>
<td>Punning J.M. et al., 2003, J. Paleolimn.</td>
<td>Vitina Linajärvi, N Estonia</td>
<td>75</td>
<td>0.9</td>
<td>9.5</td>
<td>no</td>
</tr>
<tr>
<td>Punning J.M. et al., 2003, J. Paleolimn.</td>
<td>Vitina Pikkjärvi, N Estonia</td>
<td>75</td>
<td>0.35</td>
<td>4</td>
<td>no</td>
</tr>
<tr>
<td>Facchinelli et al., 2005, RMZ Mat and Geoenv.</td>
<td>Sirio Lake, NW Italy</td>
<td>266</td>
<td>0.5 (¹)</td>
<td>1.7</td>
<td>no</td>
</tr>
<tr>
<td>Finsinger W., et al., 2006, Quat. Sc. Rev.</td>
<td>Avigliana Lago Piccolo, NW Italy</td>
<td>353</td>
<td>0.5 (²)</td>
<td>14.92</td>
<td>no</td>
</tr>
<tr>
<td>Hormes A. et al., 2009, Quat. Geochron.</td>
<td>Nedre Hervavatnet, W Norway</td>
<td>1413</td>
<td>0.2</td>
<td>2.18</td>
<td>yes (glacier)</td>
</tr>
<tr>
<td>Finsinger W., et al., 2014, Jour. of Limn.</td>
<td>Avigliana Lago Grande, NW Italy</td>
<td>353</td>
<td>0.6</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Deolasez G., et al., 2007, Terra Nova</td>
<td>Lag la Cauma, East Swiss</td>
<td>996</td>
<td>0.4</td>
<td>3.9</td>
<td>no</td>
</tr>
<tr>
<td>Deolasez G., et al., 2007, Terra Nova</td>
<td>Lag Grond, East Swiss</td>
<td>1016</td>
<td>0.55</td>
<td>7.3</td>
<td>yes</td>
</tr>
<tr>
<td>van der Blit W.G.M. et al., 2015, Quat. Sc. Rev.</td>
<td>Lake Hajeren, NW Spitsbergen</td>
<td>35</td>
<td>0.24 (³)</td>
<td>3.32</td>
<td>yes (glacier)</td>
</tr>
</tbody>
</table>

¹ in the last 2000 years
² down to 8.3m
³ down to 270cm

- **SIRIO**: Being the thickness of sediments form SBP around 2.5m, where have the first 10000 years gone?
- **CANDIA**: still we have not seen the bottom of the lacustrine sediments!
Acknowledgments:

The Authors would like to thank the “Città Metropolitana di Torino” for the cooperation and permission to work on the lakes and publish the results; Lino Judica and Adriana Bovio (Territorial Laboratory of Environmental Education, University of Turin, Italy), Diego Franco, and Gianbattista Piazzese, for their help in collecting the field data.